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Abstract—Three independent strategies are tested toward the synthesis of the protected 1-aminobicyclo[2.2.2]octene ketodiester 1.
One of these three is found to be completely regioselective. It proceeds by Diels–Alder addition of dimethyl acetylenedicarboxylate
to the silyl enol ether of 3-benzyloxycarbonyl-2-cyclohexenone, followed by a chemoselective Curtius rearrangement. © 2002
Elsevier Science Ltd. All rights reserved.

Bicyclo[2.2.2]octanes bearing a free or protected NH2

group at the bridgehead have served as scaffolds for
antiviral agents,1,2 as inhibitors of phenylethanolamine
N-methyl transferase3 and as ligands for the
phencyclidine4 and dopamine5 receptors. In contrast,
the literature on analogous bicyclo[2.2.2]octenes is
sparse,6 and highly functionalized ring derivatives
appear to be unknown. We now report a comparison of
three synthetic strategies directed toward the protected
amino ketone diester 1 in this series.

Our initial approach to 1 attempted to parallel earlier
work by Wolinsky and Login toward bridgehead

carbinols in this system.7 Starting from 1,3-cyclohex-
anedione, we prepared the vinylogous urea 2.8 The
latter was converted to an O,N-bis-silyl derivative, for-
mulated as 3. This was subjected to Diels–Alder reac-
tion with dimethyl acetylenedicarboxylate to yield an
adduct, expected to yield on mild acid hydrolysis the
bridgehead carbamate 4.

To our surprise, hydrolysis of the initial Diels–Alder
adduct gave a product ketone devoid of nitrogen,
namely the bridgehead hydroxy ketone 5 previously
prepared by Wolinsky.7 It thus became clear that the
diene initially assigned structure 3 was in fact the
regioisomer 3�, and that the isolation of 5 as the final
product had proceeded by the parallel Diels–Alder
sequence picture below. Thus, enolization of 2 had
followed the pathway noted by Bryson and Gammill,
involving enolization at C(4) of the cyclohexenone
system.9
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Scheme 1. Reagents and conditions : (a) i. 40°C, 2 days, ii. CH3I, CH2Cl2, iii. DBU, CH2Cl2, 67%; (b) dimethyl acetylenedicarboxyl-
ate, N,N-dimethylaniline, 80°C, 69%; (c) i. catecholborane, 2 mol% Rh(PPh3)3Cl, THF, then H2O2, Buffer pH 7.0, ii. DMSO,
(COCl)2, Et3N, CH2Cl2, −78�−60°C, 55%; (d) i. 30% CF3CO2H, CH2Cl2, ii. (COCl)2, DMF, CH2Cl2, iii. NaN3, acetone/H2O
(3:1), iv. t-butanol, reflux, 63%.

Scheme 2. Reagents and conditions : (a) see Ref. 14; (b) TBSOTf, Et3N, CH2Cl2, 0°C; (c) dimethyl acetylenedicarboxylate, 80°C,
66% from 10; (d) 1 M TBAF, THF, 91%; (e) Raney-Ni, ethanol, (f) i. (COCl)2, DMF, CH2Cl2, ii. NaN3, acetone/H2O (3:1), iii.
t-butanol, reflux, 55% from 13.

To overcome this problem, we sought to introduce the
bridgehead nitrogen by Curtius rearrangement.6 Diels–
Alder addition of 1-(N,N-dimethylamino)-1,3-
butadiene10 to t-butyl acrylate gave adducts which
upon Hoffman elimination gave in 67% yield the diene
ester 6.11 Reaction of this ester with excess dimethyl
acetylenedicarboxylate in the presence of 5 mol%
Me2NPh gave 69% of the bicyclo[2.2.2]octadiene tri-
ester 7, accompanied by ca. 10% of the retro-Diels–
Alder product 8.12 Hydroboration of diene 7 with B2H6

gave no selectivity. However, reaction with catecholbo-
rane and Rh(PPh3)3Cl as catalyst13 proceeded with
moderate regioselectivity to yield, after neutral H2O2

workup and Swern oxidation, a 55% yield of the ketone
9. Trifluoroacetic acid cleavage of the t-butyl ester, then
successive conversion of the carboxyl group to acid
chloride and then acyl azide, followed by overnight
reflux in t-BuOH gave the desired target 1 in 63% yield
from 9 (Scheme 1).16

Finally, a completely regioselective third approach to
the protected aminoketone 1 was achieved starting
from 2-cyclohexenone. Conversion of the latter to the
3-benzyloxycarbonyl derivative 10 by a known
procedure14 was followed by treatment of 10 with
TBSOTf and Et3N to give the diene ester 11.15 Diels–
Alder reaction of 11 with dimethyl acetylenedicarboxyl-
ate gave adduct 12 which on hydrolysis produced
ketone 13 in 60% overall yield from 11. Hydrogenation

of 13 over Raney-Ni chemoselectively produced the
bicyclooctene acid 14. Curtius rearrangement by the
sequence described above gave the protected aminoke-
tone 1 in 55% yield from 13. The last route comprises
an efficient sequence to this highly functionalized bicy-
clo[2.2.2]octene system (Scheme 2).16
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